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Abstract

'This;rechnical:Memorandum presents a derivation of the equations of
motion for large and small disturbance perturbations from a reference
state of motion. The small perturbation equations of motion are then
generalized to include the effects of atmospheric turbulence and gusts
on the controls-free elastic aircraft. The resulting equations are
termed the EXACT formulation. These EXACT equations may be used to
evaluate the stability and performance of integrated flight control sys-
tems of the Control Configured Vehicle (CCV) type. The equations are
unique in that they describe a highly damped system using motion coordi-
nates referenced to a body fixed, "mean", non-inertial axis.

" The EXACT formulation of the equations of motion are difficult to

solve numerically. This difficulcy can be overcome in some flight control

analyses by using a simplified formulation such as:

® QUASTI STATIC

® MODAL SUBSTITUTION
® RESIDUAL STIFFNESS
ORESIDUAL FLEXIBILITY
®MODAL TRUNCATION

The range of the applicability of each of the spscialized formulaticnc

is limited by the assumptions required to reduce the EXACT formulation to
that specialized formulation. 1 discussion of. the assumptious is pre-
sented to guide the application of each formulation to military and com-
mercial aircraft.

It is concluded that the passive acceptance of the MOD .. TRUNCATION
and QUASI STATIC formulations by flight control analysts should be justi-
fied numerically at the critical flight control design points. In addi-
tion, it is concluvded that the full implementation of the integrated
flight control benefits, promised by the CCV concept, has a current limi-
tation due to the possible inappropriateness of the "invacuum normal modes"
as elastic coordinates in a highly damped system. This limitation may be
removed by developing a computational method for _he accurate solution
of the precise TXACT formulation.
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Foreword

This Technical Memorandum was prepared under wofk unit 82191304. The
work unit, entitled, "Analysis Methods for Control Configured Military
Vehicles", is divided into five parts:

1. A literature search.

2. A formulation of the equations of motion for the controls-free
aircraft. '

3. A simplification of the equations in item (2) to permit a more
rapid, but less accurate solution for flight control application.

4, Solutions of the equatibns in items (2) and (3) using USAF air-

craft as test cases to develop criteria for the selection of appropriate
formulation of the equations of motionm.

-~ 5. A final summary report.

The work reported in this TM summarizes the results for items (1), (2),
and (3) sbove.

The responsibitity for the accuracy and conclusions presented in
this Technical Memorandum rests with the organization that prepared it.
This Technical Memorandum has been reviewed and is approved.

. B. WESTBROOK, CHIEF
CONTROL CRITERIA BRANCH
FLIGHT CONTROL DIVISION
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craft with respect to mean axis. i
K lbslﬁr Stiffness matrix of aircraft represented 3 :
as "free-free" structure, 3
: k 1bs/w Generalized stiffness matrix. %
& : , ¥
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Unit Definition
! none Body axis orientation.
ncne Residual flexibility static aeroelastic
3 correction factor.
ft Generalized coordinate defined as in-
vacuum normalized mode coordinate.
T i u, ft Generalized coordinate defined as in-
- i vacuun normalized mode coordinate for
: r retained modes.
3 %2 U, ft , Generalized coordinate defined as in-

vacuun normalized mode for deleted
8 - modes. £
1 ; v ft]sec ) _- A Body axis translation rate. ﬁ
k Vp ~ Combinatior of fy,and VU~ , "U";T: L‘U—Tro;_‘ :
S - -
o () ~ Rigid body mode shape, GT= PL FI
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‘ @r ft Rigid body rotation mode shape.
“ . QS none Mode shapes of invacuum normalized
' modes, @ = ¢, P .
i N . qb' none Mode shapes of retained invacuum normal-
3 ized modes r in number.
;
3 (ﬁ,_ none Mode shapes of deleted invacuum normal-

ized modes.
®; degrees Motion of ith control surface.
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1.0 INTRODUCTION

Recently the flight control staffs of many aerospace research and
development organizations have proposed the application of modern flight
control concepts early in the design cycle of elastic aircraft. The
XB-70(") has a gust load alleviation system. The SST(2) had a "hardered" -
stability augmentation system to compensate the longitudinal static
stability at an unstable flight condition. The B-1(3) is being designed
with a "ride quality" augmentation system to ensure that the pilot can
effectively monitor and control the B-1 when flying through atmcspheric
turbulence. Looking to the future, the USAF has proposed{(‘) the Control
Configured Vehicle (CCV) concept to achieve full benefit of integrate'
flight control system technology. - This corcept requires, among othe-:,
that (1) the reliability of a ~ontrol system be improved to a level equal
to or higner than the reliability of the primary structure and (2; the
usually adverse effects of the non-linearities in the control system design
data be overcome using high authority actuators or other contrel system
hardware and software. Then the problem of high maneuver loads, low
flutter speeds, static instability, etc. on a flight vehicle, that is
designed to be aerodynamically optimum, ~an be minimized or removed through
the use of a sophisticated CCV-type control system. Sone examples of the
CCV-type control systems may be found in references 5, 6, and 7.

The achievements of benefits due to modern flight control concepts
depends upcn an accurate mathematical model of the aircraft. The mathema-
tical model becomes even more important for CCV concepts. This is because
the design of the CCV integrated control systems requires an accurate pre-
diction of the rigid body and structural dynamics of the aircraft being
stabilized along w.th an estimate of the possible errors that may be
included ir the dynamics. In general, errors in the dynamics arise from two
sources:

1. The inappropriate formulation of the equations of motion.

2. The ncn-precise aerodynamic, structural, and inertial design data
set.

It has been traditional to attribute most anzalytical errvors in the
flight contrel design of comtemporary elastic aircraft to the design data
set and many discussions of these errors are contained in the literature.
Thus, very few discussions of the reasons for the errors in equation formu-
lation are to be found, even though the inapprcpriate formulation can nezate
the most accurate design data supplied by the engineering disciplines.

There are many formulations of the equations of motion of an elastic
aircraft currently used in the aerospace industry. To date, most of the
formulaticns have resulted from a priori assumptions or bave been tcrced
upon the flight control design due to expediencv. These types of inappro-
priate formulations result in noderate to large-sized risk factors
in the flight contrecl design. The risk factors are manifested as the
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large gain and phase margins used as the flight control sysiem design
criteria to permit large adjustments in the control system gains during
flight tests of the prototype. More complex integrated control systems
for a highly elastic, high performance aircraft, such as one using CCV
concepts, will not have the luxury of high gain and phase margins be-
cause of their complexity and their use of each aerodynamic control sur-
face for many purposes.

The effect of an inappropriate equation formulation on the analysis
of the integrated flight control system can be visualized using an ex-
ample. Figure 1.1, adapted from reference 8, portrays a simple feedback
control system: the schematic is presented in Figure l.la and the sta-
bility matrix representation of the schematic in Figure 1.1b. 1In both
cases, the equations of motion for the elastic airplane are shaded. As
shown in the schematic, the equations of motion hold a dominant position
in the design of integrated control systems. Their transfer function
relates input quantities such as atmospheric turbulence and gusts and
distributed control forces and moments to the output motion variables
that determine the motion of the elastic aircraft through the atmosphere.
The determination of the numerical value of all the elements in the
schematic may be achieved by the evaluation of the characteristic equation
of the determinant of the stability matrix in Figure 1.1b. As indicated,
the equations of motion in the upper lefthand corner of the matrix in-
fluence the numerical value of all the control system elements, e.g., the.
filters, forward loop compensation, feedback loop compensation, semsors,
sensor position, etc.

It is the intent of this paper to outline the source of those er-
rors in the integrated control system due to the formulation of the equa-~
tions of motion. This objective is accomplished by deriving a unique
and precise set of linear, ordinary differential equations of motion
for a controlled aircraft flying in a gusting or turbulent atmosphere
(EXACT formulation). These precise equations are then simplified to
five other formulations using identified assumptions. All formulations
reported in the literature and used within the aerospace industry can be
related to the EXACT furmulation or to the five simplified formulations.
A contrast of the mathematical model of each formulation to the actual
physics of the elastic airplane determines:

o Which formulation is the most appropriate to each elastic air-
plane analysis.

® What qualitative errors are included in the integrated control :
system design, if an inappropriate formulation is selected due to 3

cost or time considerations. ¢

In addition, an examination of each of the equation sets indicates:
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® What problems are involved in implementing the formulations on
limited size flight simulators.

® What formulation is particularly appropriate to the inclusion of
nonlinear aerodynamics.

1.1 History and Terminolegy

The analysis of the dynamics of elastic aircraft is traceable to the
flutter and control surface divergence aeroelastic problems encountered
on the ear.y military aircraft. As elastic aircraft became more complex,
the analysis of these and cther aeroelastic problems specialized to those
engineering disciplines characterized as "flutter", "static structural
loads", "dynamic structural loads', "configuration aerodynamic develop-
went", and "aeroelastic stability and control". With the advent of more
mddern aircraft such as the B-47, B-52, XB-70, YF-12, C5A, 747, SST and
B-1, the interactions of these specialized disciplines of ageroelezstic
analysis became particularly pronounced during the design of the flight
control system. The different terminology and equation formulations of
each discipline result in engineering confusion and mis-matched structural,
aerodynamic, and stability and control data.

It is the responsibility of the flight control engineer to integrate
the data created by the aeroelastic disciplines to create a safe and
useful aircraft by means of augmentation systems. These aircraft augmen-
tation systems are used to improve:

@ Handling qualities.

@ Ride quality.

® Static stability,

®Fatigue life.

® Flutter margin.

eManeuver loadability.

®Atmospheric gust loadability.

The integration of the diverse aeroelastic data 1s not usually performed
by any of the other disciplines because of their important responsibilities
to the detailed structural, aecodynamic, or stability and control design
of the aircraft, An additional difficulty encountered by the other dis-
ciplines is that each of them has only a partial understanding of the term-

inology of each of the other disciplines, thus, the intercommunication
required fo. integrated controi system development is difficult(9),
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Some preliminary formulations of the equations of motion of an ' i
elastic aircraft have been completed. Etkin(10) developed the equations ;
of motion of vigid airplanes and cutlined a method to be used to analyze
elastic aircraft. More specific descriptions of Etkin's method and other
methods are presented in references 11, 12, 13, and 14 along with illus-
trative applications to contemporary aircraft. There are some publications
discussing the equations that describe the motions of complex elastic air-
craft configurations. Unfortunately, these publications sgecialize the

equations to an undamped, uncontrolled elastic aircrait(15) or to a par-
ticular formulation(16, 17, 18),

Those equation formulations commonly found in the literature may be
categorized as:

QUASI STATIC - The motions of the structure are assumed to be in phase :
with the rigid body motions: elastic motion acceleration is -
instantaneous. The method is used primarily for handling qual-
ity and reduced static stability contrel system design for elas-
tic aircraft with wide frequency separation between the rigid
body and elastic motions.

EXACT ~ The motion of the structure is determined by the eigenvalue
(root) and eigenvector (mode shape) solutions of the equations
of mot:on for the elastic aircraft. The mode shape coordinates
~ontain complex numbers. The accuracv of the solution is limited
by the existing computerized routines that calculate the complex
number eigenvalues and eigenvectors.

MODAL SUBSTITUTION - The motions of the structure are assumed to be
related to the orthogonal, invacuum eigenvectors (mode shapes).
All eigervectors contain only real numbers.

RESIDUAL STIFFNESS - The mode shapes representing the elastic motion
in the MODAL SUBSTITUTION formulation are separated into 're-
tained" and "deleted" modes. The deleted modes are represented
in the dynamic stability analysis as quasi static aeroelastic
correctiors, using a correction factor related to the deleted
modes and the stiffness of the "free-free'" structure.

RESIDUAL FLEXIBILITY - Similar to the RESIDUAL STIFFNESS formulation,
except the quasi static aeroelastic correction factor is related

to the retained modes and the flexibility of the free-free struc-
ture.

MODAL TRUNCATION - The deleted modes of the RESIDUAL FLEXIBILITY formu-
lation are not represented by any correction factor. This is

the most common dynanic aeroelastic formulation reported in the
literature.
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£ unique qualitative/semiquantitative study of the QUASI STATIC
RESIDUAL FLEXIBILITY, and MODAL TRUNCATION formulations was conducted hy
MacNeai. Schwendler, and Pearce for the USAF and reported in references
16, 18, and 19. These formulations were compared to the RIGID AIRPLANE
and EXACT formulations using an elastic missile, a low aspect ratio air-
craft, and a B-47 aircraft as study configurations. The aerodynamic and
structural theory applied in this analysis was extremely "crude", but
since the aerodynamic model was held constant for each configuration, its
errors are hopefully minimized in the comparisons. Typical results of
the study(lé) for the elastic missile anu the B-7 aircraft are presented
in Figure 1.2, a Bode plot of the log amplitude of 8/5. versus frequency.
The following conclusions were noted in the reference 16:

® At low frequencies (less than 0.50 cps in the Figure 1.2) the
QUASI STATIC, RESIDUAL FLEXIBILITY, and MODAL TRUNCATION results
are nearly coincident.

w At large frequencies (greater than 0.50 cps in the Figure 1.2)
the QUASI STATIC formulation is highly inaccurate.

¢ Neither the RESTDUAL FLEXIBILITY notr the MODAL TRUNCATION formu-
lations accurately approximate the EXACT formulation at all fre-
quencies (above 0.50 cpc in the Figure 1.2). However, the
RESIDUAL FLEXIBILITY formulation is the more accurate approximation.

The work presented in the reference 16 culminated the analytical efforts of

"~ the USAF to represent the motion of elastic aircraft. Most USAF analytical

work in this field was discontinued in 1962 due to the absence of a digital
computer system large enough to solve the complex equations developed using
the structural and aerodynamic mathematical models that describe the

physics of the elastic aircraft. Instead, the USAF concentrated on experi-

mental programs such as the XB-70 GASDSAS and B-52 LAMS to demonstrate
related concepts.

In 1965 - 1967 the analytical work of MacNeal, et. al., was studied by
NASA and the Boeing Company and reported in reference 12. Here, it was
recommended that the RESIDUAL FLEXIBILITY formulation be implemented using
structural datz {rom the structural finite elcmenthrogram such as NASTRAN,
and using the Wocdward aerodynamic finite element (20) Also, the formu-
lations of reference 16 were reworked to form a amenable to the large
digital computer system - the CDC 6600 or IBM 360. The resulting program
has been called FLEXSTAB(21), uyser experience with the QUASI STATIC and
RESIDUAL FLEXIBILITY formulations in FLEXSTAB has not yet been reported.

1.2 Problem Definition and Solution

The aerospace industry uses many of the formulations described in
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Section 1.1 to design and develop its military and commercial aircraft. .

Thus, it is common for the USAF and the AFFDL to encounter the many formu-~ -3
lations (with individual company variations) during the proposal evalua- C

tion and the contract monitoring phases of military aircraft development.
As examples: ‘

The XB-70: QUASI STATIC and MODAL TRUNCATION.

s
i . T U s
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. The B-52-LAMS and B-52-CCV: MODAL TRUNCATION.

The F~4 CCV, Terrain Follower, and Survivable Flight Controls:
QUASTI STATIC and MODAL TRUNCATION.

The YF-12 RIDE QUALITY: QUASI STATIC and MODAL TRUNCATION.
The F-111: QUASI STATIC and MODAL TRUNCATION.

E The C-5A: QUASI STATIC and MODAL TRUNCATION.

LNty

E The B-1: QUASI STATIC and MODAL TRUNCATION. S
‘ The F-15: QUASI STATIC and MODAL TRUNCATTION.

b . 3 The proposed SST designs: QUASI STATIC, RESIDUAL STIFFNESS,
: and MODAL TRUNCATION.

There has been no previous attempt to categorize the formulations of the
equations of motion used in flight control system designs and establish
criteria for their use. As a consequence, the limitations of each formu~

3 lation as dictated by the assumptions required to derive the equations
4 i are not recognized.

N It is the objective of this Technical Memo to classify and contrast

- these formulations relative to a unique and precise formulation of the
equations developed herein. This objective is accomplished in Sections
2.0 through 5.0. In Section 2.1 and 2.2 the nonlinear and linear equatioms
are developed to describe the motion of a controls-fixed elastic aircraft
relative to a non-inertial, bodv-fixed coordinate system. The linear equa-
tions are modified in Section 2.3 to include the effect of the free aero-
dynamic control surfaces and the effects of atmospheric gusts and turbulence
on the elastic aircraft; the resulting equations are termed the EXACT
formulation. In Section 3.0, the EXACT formulation is modified using
. listed assumptions to simplify the mathematical model of the elastic air-
y craft. These simplifications result in the formulations termed QUASI
STATIC, MODAL SUBSTITUTION, RESIDUAL STIFFNESS, RESIDUAL FLEXIBILITY, and
MODAL TRUNCATION. The results of the studv ave presented in Section 4.0;
the conclusions and recommendations of the study are summarized in Section
5.0. A List of References is contained in Section 6.0.
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It is not the intent of this paper to discuss the many methods avail-
able within the govermment and industry for the calculation of aerodynamic
and structural influence coefficients. Thus, it is assumed throughout
this paper that methods exist to calculate:

iy Mna e i N TR

. @ Distributed aerodynamic forces on the surface of the aircraft.

5 ® Mass distribution for the aircraft.

@ Stiffness and flexibility matrices for the free-free and canti-
levered structure.

St A LA S e deesy

® Other data as required for the flight control analyses.

Also the effect of thrust on the initial shape is assumed negligible.

The forces due to thrust perturbations are included implicitly in the
aerodynamic force terms.

PUNEELE SRR LN

2.0 DERIVATION OF THE EQUATIONS OF MOTION OF AN ELASTiC AIRCRAFT

Before the flight control engineer can begin development of the
integrated flight control system of an elastic airplane, there must be
an accurate description of the aircraft being controlled. This descrip-~
tion is termed the "equations of motion" and the description contains
inplicit and explicit references to the struccural, aerodynamic, and geo-
metric properties of the aircraft. All the elastic aircraft equation of
motion formulations heve these three groups of data in common; however,

the assembly of iaformation depends upon the description of the dynamics
of the aeroelastic problem.

2.1 Selection of Motion Coordinates

There are many descriptions of the dynamics of elastic aircraft
discussed in the literature. These descriptions canm be grouped into two
categories depending upon the coordinates used to describe the motions

of the elastic aircraft. The two categories of displacement coordinates
are:

® Displacement coordinates relative to an inertial axis, i.e., an
earth fixed axis or any Galilean related axis.

®Displacement coordinates relative to a non-inertial axis, i.e., an
axis "fixed" to the accelerating elastic aircraft.

These two axis systems are shown in Figure 2.1,

10 {
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2.1.1 Displacement relative to inertial coordinates

EIRABR S
oy

In the first analysis grouping, the displacement of the surface of
the elastic aircraft is measared by a vector expressed relative to an i
inertial base vector system. Typical examples of this approach are found %
: in references lland 17. A flight control engineer using this analysis ;
3 : approach to the dynamics requires that the structural, aerodynamic, and
; geometric vector parameters of the airplane pe expressed in the inertial
axis base vectors. It is usual in most of the literature to develop the
elastic body motions as a trajectory of the body and the surface of the
body relative to an inertial axis translating in a straight line at a
uniform velocity relative to the flat earth. The uniform velocity and
direction of motion is that of the elastic body prior to the onset of the
disturbance producing the elastic motion. This analysis method is typically E
used by those specialities concerned with "flutter" and '"dynamic struc- H
tural loads".

2.1.2 Displacement relative to non-inertial coordinates

In the second analysis grouping the displacement of the surface of
the elastic aircraft is measured by a vector expressed relative to a
non-inertial axis base vector system. This axis system experiences both
linear and angular accelerations relative to the jinertial axis discussed
previously. Typical examples of this approach are fouad in references
12 and 15. The flight control engineer utilizing this analysis approach
requires that the structural, aerodynamic, and geometric vector properties
of the aircraft be expressed in the body-fixed base vectors. This anal-
ysis approach is typically used by the specialities concerned with "aero-
dynamic configuration development" and "aeroelastic stability and control'.

2.1.3 Contrast of inertial and non-inertial coordinates

The flight control engineer must choose the better of these two
approaches for each elastic aircraft flight control integration problem.
The inertial coordinate analysis is a classical mathematical approach and
is familiar to most engineers who solve structural dynamics problems. On
the other hand, the non-inertial coordinate analysis possesses consider-
able flight control engineering practicality:

1. Augmentation svstem criteria: The criteria presently used to
design the handling quality and reduced static stability augmentation sys-
tems are expressed in terms of the rigid body motions and aerodynamic
stability and control derivatives measured relative to the non-inertial
axis. Since criteria for the integrated flight rcontrol augmentation sys~-
tem utilizing CCV concepts are not yet specified, either of the two anal~
ysis techniques would work. However, the non-inertial analysis technique
has the prerogative,

12
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2. Analysis of nonlinear aerodynamic effects: The integrated

flight control system design points usually lie at the extremes of the
flight placards where viscous aerodynamic effects induce pitch-up, buffet,
etc. These effects are currently measured in the non-inertial, body-fixed
axis coordinates. The important nonlinear aerodynamic and corntrol system
parameters are most efficiently programmed in cterms of the non-inertial
coordinates, thus minimizing the required computer size, computational
frame time, and recquired axis transformations.

3. Flight simulator analysis: Pilot work load and misorientation
are very important considerations for the design of an integrated flight.
control system. These two problems are usually evaluated in fixed base
and moving base flight simulators. Since the pilot considers himself
a "mass" attached to the airframe, he evaluates his motions relative to
some body-fixed, non-inertial axis. Usvally the information presented
to him in the cockpit, i.e., angle of attack, sideslip angle, relative
velocity, et., are directly related to the motion of the non-inertial
axis.

4. Large disturbance maneuvers: Large disturbance military maneuvers
required for defensive and offensive weapons delivery, are very often de-
sign points for an integrated control system. These large disturbance
motions are easily described in terms of the non-inertial coordinates and
are diificult to describe in terms of inertial coordinates.

Due to the above practical considerations, the non-inertial coordinate
analysis approach is adopted in this Technical Memo. C viously, both
analysis methods must give the same results, but the non-inertial analy-
8is is the analysis method most easily applied to the flight control inte-
gration problem.

13
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2.2 Controly-Fixed, Elastic Aircraft Equations of Motion

Vb S s R AR,

This section presents the equations that describe the motion of
an elastic aircraft subject to aerodynamic forces that are independent
of control surface position and atmospheric disturbances. The equations
are derived for the case of the aircraft idealized as N '"lumped masses"
each having 3 translational degrees of freedom relative to a "body axis
system". The 3N rotational degrees of freedom may easily be included in
this formulation, but are omittod for purposes of clarity. The body axis
system is defined as an axis system "attached" to the elastic aircraft
by a means to be specified later in this development. Since the axis is
attached, they are characterized as '"mon-inertial", i.e., the axis experi-

ences 3 translational and 3 rotational accelerations whose magnitude are
related to:

R Ry

® The elastic motions of the N masses relative to the body axis.
® The éerodynamic forces on the system,
®The choice of the body axis.

@The location and orientation of the body axis at t = 0 (the imitial
condition).

®The gravicational forces acting on the aircraft. ' 3
oThe mass distribution of the elastic aircraft.

The basis of this derivation is Lagrange's equation rather than the
Newtonian equations applied by references 12 and 15. The reason for this
approach is its simplicity of application - a minimum of notation and of
analysis steps are required. The final results of the derivation can be
checked against reference 12. '

The Lagrangian technique to be followed is from reference 22 and
that notation is used. Recall that the Lagrangian, L, must be written 3
relative to an inertial axis to be used in Lagranpe's equations: g

£0%)-38 =% '

Brd =h.
+Toqg T T (2.2)
where L; is the Lagrangian for some ith mass particle.

14
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?; is an appropriate roordinate vector.
)L}/)i is the rate of change of L; due to q.
(~r) is the time rate of change of () relative to an
observer in inertial space.
e
Fi is the impressed force vector acting on the system.
1:;15 the angular momentum vector of the system.
-
¥t is a distance from the axis origin to a mass point.
Lagrange's method can also be used to develop the equations of
motion for an aircraft whose motions are measured relative to a non-inertial

axis, i.e., base vectors Lg= L), Ja- h@),and Ry = ﬁe&) . The only

additional cgndition to be applied to ‘the analysis is an appropriate def-
inition of i%} (~):

Z*( ) g;( ) + W % (A)
’ time rate of time rate of . time rate of ’
change relative change -elative change of base vectors

to inertial axis to non~inertial axis

Consider the case of the elastic aircraft, shown in Figure 2.1,
which is experiencing an acceleration through a quiescent atmosphere
at a translational velocity Veq and a rotational rate (Leq . The air- i
craft should be visualized in terms of a system of "lumped masses" inter- {

k. connected by "springs" and excited by external aerodynamic and gravita-
4 tional forces.

g
g
K
3
B

It is important to realize that the body axis selection for the
elastic aircraft case is very difficult:

® The geometric axis attached to selected masses points in the initial
3 condition is non-orthogonal at subsequent time, i.e., the body

5 reference axis system (BS, WBL, WL) bucomes non-orthogonal for the
; free elastic ailrcraft.

¢ The principle axis system develops translational and rotational ac-

celerations related to the center of mass motion plus the elastic
motion,
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® The attached axis system, attached to a single mass such as an
accelerometer and tangent to the jig body axis at the initial
condition, experiences acceleration proportional to the center of

mass motion plus the motion of the individual mass relative to the
center of mass motion.

There are several constraiats to the choice of the body axis system:

¢ The aerodynamic data is usually available only in the jig or cruise

geomecric axis systeuw, the stability axis system, or the wind axis
system.

@ The mass distribution and geometry are specified in the jig or
cruise geometric axis system.

o The structural prope:ties, stiffness and flexibility, are specified
in a structural global axis system that may be coincident with
the inertial axis or the non-inertial axis at the initial conditions.

It is assumed for purposes of this derivation of the equations of motion
of the elastic aircraft, that the mass distribution, aircraft geometry,
and structural data are specified in the cruise body axis system. Then,
the methods of reference 21 or 23 may be applied to transform these data
to a representation of the aircraft at any trimmed, off-cruise, M-q flight
point. It is also assumed that subsequent structural distovtions from

the trimmed aircraft flight point are small, i.e., changes in the geometry
of the planform and the effects of material plasticity can be neglected.
The primary structural distortions considered are those contributing sig-
nificant forces during some perturbation motion about the mean motion speci-
fied by the initial conditions of the dynamics problem.

A more microscopic view of Figure 2.1 is useful in defining the terms
used in the derivation of the elastic airplane equations of motion. One
such view is presented in Figure 2.2, Here the inertial axis, the body
axis, and several of the lumped masses, including the ith mass are shown.
Fach of thece lumped masses represents a portion of the total airplane mass,
i.e., fuel, payload, structure, instruments, etc. Each of the masses has
gravitational and aerodynamic forces acting upon it. Each of the masses

has accelerations iuposed upon it proportional to the net system accelera-
tions (body axis accelerations).

The notation used in Figure 2.2 is defined:

X‘sza are non-inertial axis attached to the elastic aircraft;
A oA
base vectors ig, Ao and 25 .
xt\{ Z_ are the inertial axis either attached to the flat earth
7T or translating rectilinearly at a uriform velocity; base
vectors 0 , ’3\ , and & .
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K(j)is a vector distance from the inertial axis origin to the
body axis origin.

sy - 2
Pi(})is a vector distance from tne body axis origin to the
ith mass.

'ﬁ();)is the vector distance from the inertial axis origin to
the ith mass.

F:lt)is the vector force on the ith mass.

The Lagrangian for any mass in this system is:

N
1 (R < ! )
L; = Yami (% ) /:LZI‘ K;}(Pf--ﬁ)

(2.3)

where WA, is the mass of the ith "lumped mass".

K;«is the free-free structural stiffness influence coefficient at
the {th mass due to a displacement at the jth mass in one of three
possible directions.

Applying the definition of —\:; , shown in Figure 2.2,

V= Rafh = Veat 3B 4 N X T (2.4)

., o L] N
L; = "am ((R+f)-(Ref)) -'/%§ Kis (5; .-‘;a.) (2.5)

Equation (2.5) contains 6+3 N motion variables.

Sub.stit_:gtion of L: from equation (2.5) into equation (2.1), and
1etting§=|>; , results in the equations of motion for the 3 translational
degrees of freedom of the ith mass relative to the non-inertial axis:

- 2n = s > - P,
E =m; (ch‘\r Szcaxvca"’s rea 2 Neq * S%;‘
+ﬂcaxv§; A .ﬂca x (ﬂcaxﬁ ))
N
+ K..D-
Pl P; (2.62)
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For axis translation, q — R , 7: R L= ::ZL; :

J

SYFTRRI T

LN AND R e S R AR T

| N
- - AL/XP': ) , ‘)L/Aﬁ = ZW\j (—\7:‘ $P /’5-} *.ﬂcq )

e i e

D2 nat i RS N

—r — o ry = B
F= o= 2 m; ( 4 ﬂcmx V SZP‘/S‘iL +zﬁc°‘xspi/81

-t iz +ﬂ¢4 XP{ " )ca XGTCA X'P‘j)) (2.6b)

T~z

T R
-~

R

The equations describing the axis rotation are more difficult to develop
since the axis origin is not attached to the center of mass. This necessitates
a careful consideration of the mathematical operation emploved in equation
(2.2). Consider first the angular momentum for the mass system in Figures 2.1
and 2.2 for observers stationed in both the inertial axis system with originOg,
and in the non-lnertlal axis system with orlg:moP :

s h 2 xm\- ép;xm;:ﬁ

]
Following the work of Goodman and Warner(24) » the relationship of \'\‘ to -ﬁ?
can be developed:

PSRN DU

e R A OB AT BRI e e e L et e,

. h?rl\ “F*XM?~§XM?*

: where P* is the distance from Op to Lhe center of mass.
‘ M is the total mass, ie., M —'2 mio,
int
. N
< i ¥¥ is the velocity of the center of mass relative to the inertial
axis.

Differentitate »\‘, , i.e., ‘a\"PAi-:

hp -\:\: "EXME*-—MF*X%

Mp

—
where My are the moments about O .

I

o
N‘, are the moments about OP .

b
o.% is the acceleration of the center of mass relative to the
inertial axis.
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Ma = hy+ I"\3
~ where _..3 = Vca b Z wm; P‘/S-x + ch zm S)mx?‘) M

A=l
for an axis system not attached to the
center of mass.

1 =
Thus ,‘mf/ﬂ # MP unlegs the non-inertial axis is attached to the
:§ center of mass,’ﬁ":o, or R=0 , or p"‘ is parallel to R . An
% alternate form for .ﬁp is that presented by Milne(13) | Here, 3
% : ' :
b N s b
:,i - — ﬁr- 3
he= 2P x ™ gt | | i
3_4 — . - & -
Be = My = Vea x 2m; <P/ -
F: P 4 | 55
: A convenient redefinition of, this expression forT—: separates the agro- f,
dynamic and thrust moments Mq , from the grav1tat10nal moments, Mg , 3
i.e., i
3
h __M -V xi‘,m' i/ a4 '\'Ma
¢ iz
or, alternatively, , i

= O for the axis attached to the center of mass.

-— —
In terms of the notation in this paper, hP anda M.L are expressed as:

Te ZP‘ v m; (Vs SP/ep + SleoxPr)

\ =2 FexmiVi, -\-EPx */S**;P x ™ (ﬂ«"h\
i =) =t

-—

M = ShP/‘é* +.Slco.>d'\ 4+ Ms
= Zm (BPifgex V) + 7:"1 (7 Vo) 4 Zm Ll xVea)

+ Z m; P % (B'TCQX? - imi .SLca.xT;.‘ (-Slca. "P"; )
+ ?_.‘-.‘“i (‘[3. x® P2)

N o R - (2.6¢c)
- ZIZM; F; x(‘&pz/%* X-W-cm) + ng
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The reader should observe, at this point, that a 51mplif1cation of
equation (2.6¢ poss1b1e by noting that the terms ( P~/8j XV«L)
and the term ngm Pilg e will cancel one another. However, this
cancellation will A4St be effected to measure the importance of the attach-

ment of the axis orgin to the center of mass to occur later in this paper
in section 2.2.2,

2.2.1 Large disturbance equations of motion

Equations (2.6) are the equations describing the general motion of
elastic flight vehicles in the quiescent atmosphere. In practice, these
ecuations are modified and simplified to facilitate their use in the
analysis and synthesis of flight control svstems. The description of the
large disturbance motions, to be defined the."large disturbance equatioms",
is required for two purposes in these analysis. They are used (1) to develop
the linear equations describing the small disturbance motions and (2) to
evaluate in detail the control systems designed using the more simple and
less accurate linear equationms.

To develop the large disturbance equations, it is assumed that all
the time dependent motion variables can be separated into an initial value,

plus a perturbation variable. In the case of equations (2.6a), (2.6b), and
(2.6c), this separation has the form:

Via =W e) 2, = Uawd gy + Vi) gyv (Ups) By @79
}i R +W, )A (£, +w34.5+ (R +Nt)25+ 5154'603)2 (2.70)

A substitution of the perturbation expressions defined in equations
(2.7), into the motions, related by equations (229), results in equations
(2.8). In equations (2.8) vector products, i.e.,axb, have been converted
to an equivalent indicial notation form, i.e., eﬂ;!akb} .

Axis Translation:
(F).yp-)) =M {Hf) *{"j)*ejhl[ﬂh“*‘h)(w""x\] + m, (‘é" +.P‘"L‘ )
4-2."\; eShl (;LL-HA)LXE‘..*».PH) '+h‘\"ea'hq (fl‘ﬂ;ﬁk)(P“ '\‘P‘(‘.)

T mieny (Rp+we) € 2pn (AmBa; +mpPns + B ¢ wMPni)

where {1 ranges from 1 to N; where j, k, 1, m, n range
from 1 to 3.

(2.8a)
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The term @;p¢ is the vector pernutation symbol commonly enployed in
the indicial notation to represent vector cross products,

Axis Rotation: :

where

o "*):‘”ﬂﬁﬁﬂm{g&@, SRR |

(ﬁp i ‘.‘p‘) =m; eakd (.Eg*[‘)&) (\,l *’b‘l) +im; ejkﬂ. (Pki*Pk:)(‘.{( M}Z)

ey (NﬁwA) Sgmn (Bm; *Pn.\(w\""u_‘-‘)
+ mie g (Bh+pas) St (i) Boi +pnc) |
- m‘ ej“ (ﬂkﬁw&)(E}"}P‘;) Sm“ (ﬁm“?‘om)(gni* Pm) o
+ m; 63“ (Phd-P“ )(.P.q;-f'ﬁu) _
- 2m; ea' k¢ (PA."l'Pk;) hmn (ém; +f’w)(nh*wh)
/ S .
(M35+ M%‘) = m;ew (\f*_-}'!ra)(PQ +Pu)
4 M; e“u (VA."U.Z._) Ctmn U?m"'-‘_)m) (E\.{ *Pn.')
/
- (M a5 Mas)
where 5.,.“ is the Kronecker delta function, where i ranges from 1 to Nj
where j, k, 1, m, n ranges over 1, ¢, and 3.
|
i
22 3




= e L T TV T TR AT Y A £ T T T I e BT FAAT VT LT R 0T R it TR
T Y T R KR Y P I ST TR T w1 TN ST S YR - ; AR L T LA RTILLT NG

Elastic Deformation at ith Mass:

L (F + %) = m; T ) ) (o)) + (B, 45y 1]
+ 2 Ch (2400)(B, 4 Pu) te (Rgr, (B, +Pl4) |
+ eale Ug+0,) Stmn (NP + Tl pr; +WOmBhi 4 Oy 3]

| E‘ Keigbp +2u) (2.80)

where K.‘.su Ptk is the force on the ith mass in the jth direction due
to a detormation at the kth mass in the 1lth direction, and where no
. summation on 1 is intended; where i, k, 1, m, n range over 1, 2, and
3 3 unless otherwise noted.

In equations (2.8), the initial values of the parameters are F HP )M“ MJ.

MG‘ , F;‘ ,E} ,V , and .ﬂ- ; the perturbation values of the parameters“ d

b ainte R ANVAL . LRSS eT LSRGl

are h .:Ma. M?)’”‘J‘P“’Fﬁ"’ j and Wy
- - Equatlons (2.8) contain both initial condition motions and perturbation ;
3 motions from the initial conditions. It is of advantage in later analysis -4

to now separate the two motions. This can be accomplished by setting all
the perturbation parameters to zero in equations (2.8):

Axis Translation:

' ' Fy = M\—-Vs*e;;u-nm']*mz 153: +2m; eghtﬂlf.fu

Axis Rotation: ’

' ] ’

" y - N : 2.

; Mo.) - H?)-# M33 (2.9b)
: where

HP‘.) =m; ek VA +m; € pe T Vi + Mi € 40 g BV
+ma'ejh! PA.' EImn.ﬂ».?.\; - n; e’bl.ﬂkE“.SMh_ﬂmEM

tmiep By By — am; ey P @4, By
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3 ;:— M%? = m‘esh‘QVAEu + my ea“QVL elm“ﬂ”‘ E“‘ MQ)
? Elastic Deformation at ith Mass: i
Fj‘ = Mm; [Vé—!-eéuﬁ.ﬁ_vl +E§i +Qe$“lﬁkfc ’
1 + @SR Ey, +e§b¢ﬁhelmhﬁmfni.}
N 3
+E Z K..
kot £ L:Ll P“L (2-9C)
:. A substractior of the initial conditions in equations (2.9) from the combined ;
P : initial conditions and perturbation motions in equations (2.8) results in ¢
: the large disturbance equations of motion, equations (2.10): ;
Axis Translation:
=M [13-34 ejut B+ Vw47 wﬂ] APy ;_
e . 4
2 e (Rpy vev Pli'““‘)LPu)
| ;@ (ﬂkPJ,;+‘;~’AB£+thIL)
| + ;€50 (N +08) €4y, Tl po; +00m P +Pas i)
| + M @jp0 Wy € fnrIlm Fn (2.10a)
3 Axis Rotation:
1 .= h.. . (2.101)
Ma; hn v Mg;
|
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Elastic Deformation at ith Mass;

‘f;‘ =m ['VJ‘ +Sjhe (575.1%*‘/}?0&““"41’7.) * P | £
+9‘egu(ﬂl.f3u +uy By +w“3,,.) g
+ edb‘ (J?o‘- PL + wAPL' ty, P"*) + eé ke (DL-'U)L) Snn (.)). Pn; 450.“[’.\;-!'035‘1)&:) ‘ E

v

: N 3
) : .
3 :__ + eJM Wy Coran r\\Pm] %%‘K .caLQ pek (2.10c)_

Dty i g e
e e et (At et ke b Y A sy

SR

\ The large disturbance perturbation equations contain reference to both the
S . initial conditions and to the perturbation motions. Usually, these initial
conditicns are specified or determined from equations (2.9) in each problem
of interest to the flight control engineer.

AT

2,2,2 Small distrubance equations of motion

In many cases of practical importance, the large disturbance equations
are simplified to a small disturbance form. This simplification accom-
polished by assuming that all perturbation variables are of order € ,O(e),
- where € is a very small number, Then, products of the perturbation
) variables are of even smaller order, i.e., O (€ ) multiplied by O(€ ) is
O(¢*), where O(Eg*) << O (&). If all terms of O( &*) or smaller
are eliminated, equations (2.10) are linearized, and the small disturbance
equations result:

Axis Translation:

{3 =M [’\‘f)’- +€3“ (ﬁk"U‘r‘- WV )] +m, i;st +a2m; e‘)hl u&ég*mhfli)

+m; @jg (g py + 0 B)+ ™ €071 & St (Rempog +OmBr;)

M b0 Wp S tmp T m B, (2.11a)
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Axis Rotation:

Maé = h” + ng (2.11b)

vhere
'V‘Y’j: m; é3b¢ (By;v + Pp; Ve ) + M g (3;1.’:.'*91‘:‘.&3 |
-\-M; €5kt Wg 2 fmn km; Vi + M:E4he iy (Baivn+ Pri V)
BRI p“efm\ﬁ B 4, €44 B €00y, 02, Pyt W B:)
-m; e‘m_ﬂk?g Smn (T P,.-;-f WnPni)
ERUAST (ﬁk Pu-(-wkf(;)Snn m Dn; +M Ejks (Pl’i.ﬁli + P&;}-g(;)
=AM € ¢ Phi Etmn éﬁ; IMn |

- &, e‘sb_q fh- Shmn (.Em;wn‘* [),..;ﬂ h)

M35 =ml ea'kﬂ (VL P *Vp.P(’;) + M@K Efmn NAmBas
iy eéhtvh €ton (> mPni +wmn

Elastic Deformation at ith Mass;

‘Vi" =M, [1;'& +€‘S“ (Dk"&'l' wLV,_) + 'i;); 12 erQ U?qu‘, -HO‘P[;)

+ €50 Bppy; +0880) + €t Nk @0un (R Pri + DenPi)

+ e@uwkefmnj}""?‘\l]

L .
%%K%'“PML (2.11c)
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The most common flight control problem analyzed using the small disturbance
equations is that of wings level, constant velocity, rectilinear flight,
parallel to the surface of the "flat" earth. As a consequence, the remainder
of this paper will consider that analysis problem. For these initial '
conditions, equations (2.11) are greatly simplified:

FIRTIC A
SR ST TR

Axis Translation:

e TR T B R A BTN

B =My e Vewp ] +m; Pji +Mi g duBe;  2o120)
Axis Rotation:

0
Bl
pz

%

Mq‘., = \r\Pa- + Mas (2.12b)

i g B A AT T A
I TP S T e o)

he; = Micjup pa; Ve + €M By tmiejw, e, BV,

M B egmn®n Eni + g © ;40 Bei pu

3 Mg,' = m; e—éhlVL i:u + miejkpvkelm“wm Eh; - MG&

Elastic Deformation at ith Mass:

'Péi = m, [133-+cjh,w£\[¢+3>); -&-EJU ‘*.JAERJ_.’ +Z?=\kia‘hQPlL (2.12¢)
Equations (2.12) are expanded in equations (2.13) using

the following
definitions:

BT i

T = UL+ U135+“3 by v = Ul, +U;35+U3X,
= uze+v—3«a+w—1}, =% f+ Vo, + W 2,
B = w4+ wofp+ ok = Nty 4 Mgy 2y
= ploigih v =Pli+Qs, +R A
= P fa*‘Ph’jb*PBizt P =04 +P_z,;3" «-Pa;ta

b

ol

] . s o
(R+2) = }‘Zm:‘%—% +Zm;%§i = (A'M‘ﬂ‘. +(An*4~.\55 +(b,+a,)d,
(ﬁd;) = im;%‘ + 2"%;% = Bab)ip + (Bd-h‘);)‘k + (Byh,)?k

H Ani

» (€+3) =2Mff; + 2“\; i o= (Caeddy + (Q*%)ga + (G Ty
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where u, v, w, p, q, r; Uo, Vo, Wo, P, 0, R are the standard notation, such
" as defined in reference 10.

Rigid Body Translation:

'Pj"M%(Qcosgo) = M(&+?W°~PV°) +a |+ ?C’; -<C,

f4Ma@eos®, = MlGsrU,-pW,) 4|a, | + € 3G

£ -Mg(esmg,) = M(«&+pv°-‘?u.,) +1a, +p€L -—§7C,

(2.13a)
Rigid Body Rotation "
N N . [
Ma= [Woby 45 Ct'Vob_s ~Gy 4 Mg. * dux p "I»ﬁ' "ng v 4 ‘Z::.M; -Pu' .P.h -Z""Psii;z;
* tg ( V.C, -U,,C,_) -v (Uocs -WOCl)

N
Mq1.= Uo‘)a'\"a CB‘ch,"‘UC, *Mal -I’X é""I’;’? —I»:s"' 4 Zm;E"Fu .-%M;RA'F;:
t "(wocz. -Vpcj) =P (V, C,'QCQ

X . . N o
M“ = Vob, 41;‘C,—U¢‘),_-L:LC,_ + Mgs - ngé-tgtdq. +I33V.‘ + Z'“QP.;.P.“ 'z:miEz;F,;

iz

- , +p(U,, €, -W.6) -9 (w.e.-vie,) (2.13b)

Elastic Deformation at ith Mass:

N
{\“._ - m;a(e os®) = M; (U'HQW." r‘vo"'.‘.{ Psi"\"Bzi) *”‘.‘}’.u' '%%IKALO Pea

b B it s otk oo

£ Amgdeose. =m (40 -pWy+ ¥ B, - 3 By;) M P «;Zikau Pl
N
i -migomna) = miliaph-guos pR; -8, )4m, *zl; Kiswspa

T (2.130)

e ettt ek s

: where the productk;.h 1s the stiffness force on the ith mass in
3 the 14 direction (subscript 1) due to the vecter displacement, Pra s
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of the kth mass. Similarly for K;,44 and Kiazo -

The gravitational forces acting on the system appear explicitly in equa-
tions (2.13a) and (2.13c) and remain implicitly represented in equations
(2.13c). TFollowing the convention of most aeroelastic analysts, the terms
"axis translation" and "axis rotatinn" are replaced by 'rigid body transla-
tion" and "rigid body rotation". This less precise terminclogy has become
standard even though the term “rigid" is certainly misleading in elastic
aircraft analysis. Its use illustrates a commonly encountered problem -
often one aeroelastic engineering dis~ipline, e.g., flutter, loads, sta-
bility and coatrol, etc., generates a unique terminology that appears in-
consistent or non-precise to other engineering disciplines.

Up to this point in the development, the body fixed axis system has
been "fixed" arbitrarily to the body, since the selection of an axis sys-
tem often depends upon the problem of interest. However, in elastic air-
craft analysis, an axis that facilitates the solution of equations (2.13)
must be selected. Consider the axis attached to the center of mass of

the flight vehicle. In this nase the terms Cl, C2,,C3 and all terms in

the first box of equations (2.13b) are zero. If in addition, the axis

that is attached to the center of mass is also the "mean axis" (15),

those terms in the boxes in equations (2.13) are eliminated. The result

is an immense simplification of equations (2.13): the only remaining
coupling between the axis translation and rectation equations and the elastic
deformation equations occurs in the aerodynamic terms f} ’ f}i s and

Mai .

This paper will select the mean axis for subsequent analysis. Since

the initial orientation of the mean axis is a user specified, this paper

will select a mean axis orientation such that €, is zero and such that
the products of inertia Ixy and IZy are zero. Equations (2.13) become

ﬂ'-m%S = M(CL-»?W.—-\*V‘,)
ﬂ.-}m.&qs = M(«S—H-Ug-—pwb)

f, = M(’n'r+p\’°-—9r\).) (2.142)
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Pﬂa. = 1ixx.§ “]:xg';
Mas = I‘m‘i
Mas = -Tx3 ¢ +135".‘ , (2.14b)

£, _mge = m;(a«rqw‘,-rqu}?s;—\:ﬂ;) WP, ‘%,k;.upu
3
‘P‘L; +N.'%¢ = m; (G-+rU,- PW, +v0, - I,’E&) +h,; P’f %}«12“ Pax

% = 5 4pVe-gUt+ ph -4 Bi)+mpy; %,stlu Pas

(2.14¢)

The kinematic relationships between the inertial axis and mean axis

provides a relationship between the Euler angles qﬁ » © , and‘ﬂ“ and
the rotation rates p, q, and r:

. o.0 . 1.0
e=Q! ¢=P+r}ﬁ“’e¢ ’ '¢=r}{c'\9°

The combination of the kinematic relationships and the equations of the
dynamics can be written in a compact matrix notation as in equations (2.15):

M(’\}+M|L‘.‘°e‘\-M|,‘:Y‘°') = o f ' (2.152)

1.,"0‘, = @ (2.15b)

K dg-+m; (’3\,+Eb (M e Mzro;,))r- £ | (2.15¢)
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F= Ay + Aty + A4, +A4QP+ As IP (2.154)

where Al and A, contain those aerodynamic force derivatives propor-
tional to the rigid body translation and rotation.

A3, A4, A5 contain those aerodynamic force derivatives propor-
tional to the elastic deformations.

Combining equations (2.15a) and (2.15b) and summarizing equation (2.15c):

M (0 v Mg+ Matg) = ¢ f (2.16a)
K Qp = -m; (.&F 4’5(1}!, +M|'\Tf+ Ml‘\o;)) ++\ (2.16b)
where M= I:; ;;J

Equations (2.16) and (2.15d) are the equations of motion for a con-
trols fixed elastic aircraft. They describe the linear, small perturbation
motion about a reference state (initial condition) of wings level, recti-
linear flight. A comparison of equations (2.16) to equations (6.118) and
(6.146) of reference 12 indicates an exact coriespondence. Thus the
Newtonian approach of reference 12 and the Lagrangian approach of this
Memc have resulted in the same equations of motion. It should be noted
that this mathematical representation of the aerodynamic forces due to
rigid body and elastic motions, i.e., A1 ’ A2 s A3 R A4 ,» and
A R is unique to reference 12 and this paper. The alternative method
oéten found in the literature is a combination of A, with A, and of

A3 and A4 with A5 . This combination permits %he use of "the many

‘unsteady aerodynamic theoretical methods currentlyv found in the literature.
The disadvantage of the combination is its implicit dependence upon the :
frequency (or time) variable. This implicit dependence requires a costly 3
iterative frequency solution for the aerodynamic forces due to the rigid ;
body motions Wy, and the elastic motions & prior to or simultaneously 3
with the determination of the eigenvalues of the equations of motion of the 3
elastic aircraft. An iterative frequeacy solution is not required for
the aerodynamic forces due to the ~U5 and &f: described in this paper.
However, this computational savings currently limits the validity of the ;
solutions of this paper and reference 12 to th~ "low frequency' eigen- 4
values. The upper frequency boundary (Figure 2.3) of the validity of ;
the "low frequency' approximation has not been determined, but from the
practical viewpolnt, it is probably suifficient tc¢ do most current integrated
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Figure 2.3 Comparison of Low Frequency Approximation to Exact, Unsteady
Aerodynamic Theory

o s

2,3 Controls-¥Free, Elastic Aircraft Equations of Motion - EXACT
Formulation

A controls-free, elastic aircraft analysis problem is characterized
by active aerodynamic control surface motion in i1esponse to pilot or aug-
mentation system commands. Two common reasons for these necessary com=—
mands are atmospheric gusts and atmospheric turbulence. The equations
for the controls-free analysis are not as determinable as equations L
(2.16) and (2.15d) for the controls-fixed analysis. The reason for this o
is the dependence of the turbulence and gust aircraft responses to the
geometry and the flight Mach number of the aircraft. This difficulty
can be overcome by assuming a general form for the additional terms to

be added to equations (2.15d). The net results, equations (2.18), or (2.19),
are termed the EXACT fcrmulation. ‘

TSI 33

2.3.1 Structural damping

kit A sloy e m

In the case to be developed in this section. it will be assumed that
structural damping 1s viscous in nature and proportional to elastic dis-
placement rate, dp . The damping force is represented as D3,
where D is a damping matrix and, in general, is a dense array. It
should be noted that the 'usual assumption" that O is proportional to

m; or K '"has not been made, thus, the effect of these "usual assump-
tion" can then be identified in the development of the special formulations

]
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in Section 3.0. In the event that O 1is proportional to M or K ’ i
the following identies are valid:

(2.17a)

th
o)

@D

@pg = m] (2.17b)

1l

{ o d" 0 o (2.17¢)

2.3.2 Atmospheric gusts and turbulence

The representation of the atmospheric gust or the atmospheric turbu-
lence often depends upon the configuration being analyzed. Commercial and
military aircraft are designed using different gust and turbulence mathe-
matical models, A given military aircraft may be designed to satisfy
several gust and turbulence mathematical models, depending upon the extent
of its flight profile. It will be assumed that koth the gust and turbu-
lence can be represented as 3 components of force on each ot the N masses.
- Also, it will be assumed that gust forces £ and turbulence forces
3 iy have the same element ordering as aerodynamic forces . The
- total moments and forces applied to the rigid bedy are then:

S TV (T

G

pry - ™\
3 ¢TF%: Fu 9 ¢T¥* = ﬂ.*
U fig DA
: F:t) far f
M‘s Hlf
MZa M‘Lf-
M3y Mae / (2.17d)

The general form of Fb and xk- allows several different gust forms,
i.e., ramps, steps, l-cos, sin, etc. and several different turbulence forms,
i.e., 1, 2, or 3 component Von Kaman or Dryden power spectral density
representations. It is only required that the spatially defined gust and
turbulence be transformed to the body fixed mean axis prior to inclusion
into equations (2.15d) as either {5 or ?t . Typical transformation
considerations may be found in reference (25).
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£ 2,3.3 Active aerodynamic control surfaces 1]
] : The forces due to specified number of active aerodynamic control ; i
¢ surfaces, ¢ in number, can also be defined in a general sense. The three !
components of control surface induced forces ~n each of the N masses is é
defined to be f; . Again, the elements of ¥, are arranged in the :
same order as-those in f . It will be assumed that the elements in i
« are proportional to §_., ©. , and §_ by an equation to be :
developed for each specialized application, i.e., z
. {‘ﬁ-&:gﬂc; S +AyS; +A313;}‘.='+ ceed sk,,;S; +AS; +Agj$¢?‘-u_ (2.17e)
; Inserting the general representation of structural damping, atmos- .
{ pheric gust and turbulence, and active aerodynamic control surfaces, re- i
3 sults in equations (2.18): i
M W+ Myvp+ Matepl= BT (T4 £y +F,) (2.182)
3
rﬁ D&?-\—ké‘, = -m; (AP “'d)("}r‘fH.’u;"' Hzf‘o;))
! 8+ fe +Fy+ 6y (2.18b)
where  F2 Ao Autp 4 Aydy + A4§\‘, +As % (2.18¢)
) Alternatively:
!
. 1 —
E M o ] (g MM, ©](; MM, © Y &rﬂ
: 6 I, o ‘r.of*—o OQO'-(-O o |4 = (B
”e - w . .
Gy M M dp :GeM, D] VT mdeMa K P i

(2.19a)

where
™= b-+?%.+{§k
= Ac"’p"‘ ;\21}., +A, an ‘\-Aq.br +A5.Q.P .;:p‘_.;Fa_‘_Ft (2.19b)
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Equations (2.19) are defined to be an EXACT formulation of the equations
of motion of a controls-free, elastic aircraft. Inspection of these equa-
tions indicates their form to be linear ordinary differential equations
requiring a simultaneous solutions for the 3N+6 unknowns -V and &y
subject tc the 6 constraints imposed by mean axis attached to the center
of mass of the aircraft.

It is particularly important to note that the solution of equations
(2.19) will result in both complex number eigenvalues and eigenvectors:

® The real and imaginary portions of the eigenvalues are a measure
of the stability, circular frequency, and phase difference of the
eigenvectors. '

¢ The real and imaginary portions of the eigénvectors reflect the
spatial orientation of the masses associated with an eigenvalue,
i.e., the masses of the ith mode shapes do not have precisely 0°
or 180° phase difference in position when the ith eigenvector is
complex (reference 26 and 27).

It will be shown in the next section that this result from equations (2.19)
is different than that currently calculated by the "flutter" and "dynamic
load" engineering disciplines. If the flight control engineer chooses the
typical "flutter" equations of motion in which the real number mode shapes
are used, Lue phasc and gain relationships cf any control system that is
synthesized may be in error. The magnitude of this error depends upon

the relative magnitude of the aerodynamic terms and structural damping
terms due to the elastic motion.
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3.0 APPROXIMATE FORMULATIONS

R ST T O R

The solution of the EXACT formulation requires a large digital com- :
puter. A key element in the computerized solution is the routine that ;
determines the complex number eigenvalues and eigenvectors. Presently,

these routines can calculate a ''small number" of complex number eigen- i
values and eigenvectors with a high degree of accuracy. 'As the number ¢
of complex number eigenvalues increases, the accuracy of the routines :
deteriorates due to the limited number of significant digits that the

computer can retain. In the case of a solution to the EXACT formulation,

even those calculations using double precision will eventually suffer,

since a typical value of an W is 300 or approximately 900 eigenvalues.

Consequently, an accurate solution of the EXACT formulation of the equa-

tions of motion is unrealizable for all but simplified analysis problems.

SRR

b te gt

In this section, five approximations to the EXACT formulation of i
the equations of motion for the controls-free aircraft are constructed
to permit a cheaper and faster determination of the unknown motions.
These approximations are developed by reducing the number of unknowns and
equations through the use of assumptions that may be valid only for a
specific elastic airplane problem. In a mathematical sense, there is no
single set of these approximate equations that are valid for all aircraft
or a single aircraft at all flight conditions. In an engineering sense,
one or more approximate sets of equations may be valid. In each of the
five formulations, a matrix equation similar to the EXACT foxmuldtlon,
equation (2.19), will be -developed as the final result.

The reduction in the number of the equations and unknowns often re-

sults in equations of motion that are from 10 to 50 in number. This order

of reduction, e.g., from 100's to 10's in number is sufficient to over-

come the numerical difficulty in the digital computer routines used to
calculate the complex number eigenvalues and eigenvectors. If the reduc-
tion in equation number and complexity is large and excess central memory
storage space becomes available, the nonlinear aerodynamic and structural
data may be incorporated into the analysis. These nonlinear terms are

not considered explicitly in equations (2.19), but may be easily included(IZ).

There are two means to effect the simplification of the EXACT forma-
lation:

1. The eigenvalue solution of the EXACT formulation equation can be
truncated at some selected frequency. The effects of the neglected higher
frequency eigenvalues must then be "filtered" from the integrated control
system.

2. The EXACT formulation equations can be simpiified to eliminate
the complexity by reducing the number of equations and unknowns, prior to
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their solution.

There is no engineering experience at the present time that would indicate

~ which of the two simplifications is the more appropriate for elastic ve-

hicles at all M-q flight conditioms.

The second simplification is that most commonly employed and reported
in the literature. When this simplification is selected, the flight con-
trol engineer must decide upon a static or dynamic aeroelastic formulation
appropriate to his elastic aircraft. This decision requires a certain
amount of engineering insight based upon experimentation and previous ex-
perience. It is the secomnd simplification that will be discussed for the
remainder of this paper; the first simplification is currently being
investigated by the AFFDL/FGC.

The reduced set of equations to be considered in this Section are:

@ QUASI STATIC

® MODAL SUBSTITUTION

©® RESIDUAL STIFFNESS

® RESIDUAL FLEXIBILITY

¢ MODAL TRUNCATION
3.1 QUASI STATIC Formulation

The QUASI STATIC formulation is the classical method used by stability
and control and flight control engineers prior to the advent of highly
flexible aircraft. This formulation is the most rapid and the cheapest
to solve. Due to the small number of equations, it is ideally suited to
a nonlinear aerodynamics analysis based upon experimentally measured data.

Au illustration of this approach is found in reference 12.

The derivation of the QUASI STATIC equations begin with equations
(2.19):

M © oJ(vy [MM, © ‘\101 MM, O fo) (BER
0 Tn o "o, 4| © o A.P +] o o J} =B
My md, m; % mP My O " m:gML KL 4P &

(2.19a)
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where

z
&
1

W T AR R R

‘P; = A\'\!}ﬂ A{l;"f + A;CQP +A4ﬁf +A53;; *‘?ﬁ*'% *ﬂ"

(2.19b)

These equations are simplified with assumptions Al and A2

3
Nt
ay
3
2
%
i

Al the aerodynamic forces proportional to J% and 1;, are zero

é fe., Agdp = AsTp =0
f A2 the §tructgral inertial and damping forces are zero, i.e., %
§3 N mar = DDP = 0. .
% : Equation (2.19) becomes: g
Moo 1@ MMl L MML T0ony (B
A AR S R R Lt
= Bur WPy M3,M,. m:dMi K .
S

Alternatively:
D Moo (¥, [Mm.;] % §+ [MM.’:]% % =\B
5 O Tnjl{iyf Lo J (7 o JU°F) g%

(3.1a)

m; G, T 4+ M $rﬁe*‘ W\;E@-H,;_Y:O‘, @M Fop +k "P ':.'P; (3.1b)
where now

Fo= A Ay s Mo+ T+ B 3.10
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i Substitute F} from equation (3.1lc) into equation (3.lb); collect the

3 common terms, and then determine P

m B s M P M, & M EMLre Ry = Y |

t i

3 ~{ R
: ¢Qp '=?‘}<‘WA;1 {0\1"7H35)’U}_ + (An"’niiﬁr4|)1f} :
= - (m;BrIng ety B} 5.2

Substitute cQP of equation (3.2) into equation (3.1lc) and group common
terms:

g T e g LN

G R LA O B s R O T )

& = (A A A A-m EM ) 1 + (At As(K-AJ'(A,.-m,-B))fr,

= s (KA (e BMo)op + (TeA (KA N Reryall)
)y ' (3.3)

The QUASI STATIC formulation is presented in equations (3.4):

Mo Ar h4*4|;jl 2 [?4P4|£] - éiL:#&
L I“] i?" %*'[ o {rof.i Lo §r°"-i (TN (3.4a)
fi= (14 As(K-AQ")(A.‘U; +Az.'\'f§ ""E-_*%‘* £

A, (KA (‘"’.‘5"}? -m-@M.«rP - M, \"6;,) (3.4b)

]
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All explicit reference to elastic motion cip has been eliminated
in equation (3.4). The factor(I+A,(K~A,Tq is a "quasi static" aero-
elastic correction factor applied to the rigid airplane forces and moments.
The factors-m;@ ,-m;@M,, and ~m;(M, are "inertial relief" corrections.

An alternate formulation exists in the literature. "It is based upen
the availability of a flexibility matrix for the cantilevered structure
and the construction of the "free-free" flexibility matrix & . This
formulation is repeated below from reference 12. Since the formulation
in reference 12 describes motion of a controls-fixed elastic aircraft in
quiescent air, editorial prerogative has been assumed and the terms

£+ Cé + §,  have been added to the equations.

< *
Moo I+ M. [MMJ:( %r 1 _\oIg
6 I, r;p} Lo 1™} Lo AR

! ’
8 =[x-a,3)" (rwp +A,_;\rP *f“f‘\a*"\*
- AsOm.:3 (vr-\-M.vP-»-M,_-ro’P))

where C = [T- FM'GTm;|C JM = [M o]

o I,

(C is the flexibility matrix for the cantilevered structure.

An individual applying the QUASI STATIC formulation has in effect
assumed that the elastic deformation occurs instantaneously and in phase
with the axls system motions. This representation is usually valid for
the design of handling quality and reduced static stability augmentation
systems of elastic aircraft at very low frequencies, or for elastic air-
craft having a large frequency separation of its rigid body and elastic
deformation motions. The formulation is not generally valid for the
design of the other CCV~type control systems.

The QUASI STATIC formulation has as its advantages:

1. The solution of only 6 equations, permitting many M-q flight
conditions to be rapidly analyzed.

2. The inclusion of nonlincar aerodynamic effects to flight controls
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C.,f'-"‘/c K\mb , etc.,

3. The convenlent implementation on limited size analog or digital
flight simulators.

)

3.2 MODAL SUBSTITUTION

The MODAL SUBSTITUTION formulation is classified as '"dynamic aero-
elastic",since the elastic motion is not assumed to be in phase with the
rigid body motions. It is assumed that:

A3 structural damping forces are negligible, i.e., very small
compared to the structural stiffness and structural inertial
forces.,

A4 aerodynamic forces due to the elastic deformation are negligible,
i.e., small compared to the structural stiffness and structural
inertial forces.

Assumptions A3 and A4 permit a coordinate transformation using
the invacuum, orthogonal modes of vibration. This substitution results
in the simplification of the complex number eigenvector solutions of
equations (2.19) to real number eigenvectors. The procedure for accom-
plishing this transformation is:

1. Recall equations (2.18b):

D& +K¢QP =-m; {CQ +d>('U‘P+ H-'\TP'PM‘LTB?)) _
*'P*x‘ *?34?* (2.18b)

2. Represent cﬁp as a l ensemble of invacuum, orthogonal modes
of vibration, i.e., » where ®'m.@ = Qﬁ\\ P = 5"1«35'-' 0.

3. Post multiply equations (2.18b) by @7 .
4. Apply assumptions A3 and A4 .

The result is presented in equations (3.5):
o ozmocowxuw

dmpl+ KU = - Pm 5(%!‘411},

Assuu\rnnAlAq.
+ @7 (Fafeetyi®y)
- ¢M AssuumoN A3

mil +hu = © (3.5)
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where - ¢‘Tm‘~ ¢ - m T ' (3.6a)

FTKS =4 | (3.6b)

5. Determine the eizenvalues and eigenvectors satisfying equation
(3.5) such that (3.6a) and (3.6b) ave valid, i.e., find the
eigenvalues of the determinate i[I?F-+rH”lL]\ = 0. This
eigeavalue problem is well documented in reference 28.

0f the ); , in the general €D case, 3N-6 in number are real non-zero
numbers; those A: that are real are used to determine tlie value of @. Six
of the M. n1re zero duc to the use of the stiffness matrix K for the "free-
free" structure. Physically, the zero eigenvalues mean that the elastic
displacements are known within an arbitrary 3 rotations and 3 translations
" of the elastic body ensemble. The amplitudes of the translations and
rotations are zero by definitiovn of th: mean axis. The degrees of freedom
may thus be removed bv combining equation (3.5) with equations (2.18b) and
(2.18¢c): )

I:‘i (1}? +M, T+ M,_Y‘Oé) — @T('F-&{g-x%vh) (3.72)
mU rhu = Cﬁr(‘?ﬂcﬂ%«&%) - D& (3.7b)
"('\ = A.'U‘P‘l' Az_’\}f, - A3¢UL +A4'¢C‘- “+ Ai,(ﬁi:l: (3.7¢)

Note that this coordinate transformation of Ay to ¢u has reduced the
pumber of equations and unknowrs.

Equations (3.7) can be rewritten into the matrix format similar to
equations (2.19):

Mo o]l () MMy o (. MMy o), Gy T
o T.o[{ty +{o ORTH +lo o= IR
lo o ml (U o #ug{” o RI(*) (@TR) G.8a)

where "Y\;T» f\-\.ﬂ_.»..'}\’ PN

(3.8b)
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The equations (3.8) are termed the MODAL SUBSTITUTION formulation. :
This formulation has reduced the complexity of the problem, i.e., complex H
number eigenvectors in- equation (2.19) are reduced to prescribed real !
number eigenvectors in (3.8). However, this reduction has not eliminated
the problem of determining a large number of complex eigenvalues and
complex number eigenvector magnitudes. The "inaccurate' complex number
eigenvalue routines required for the EXACT formulation, must still be used.

3.3 RESIDUAL STIFFNESS Formulation

The RESIDUAL STIFFNESS formulation reduces the number of equations
and unknowns that are associated with the elastic motion in the MODAL
SUBSTITUTION formulation. This reduction may be limited to only one mode
shape or to most of the 3N-6 mode shapes. The reduction is accomplished
by the engineer: '

1. Noting that a large separation in tne frequencies of the mode
shapes has occurred.

2, Deciding that the problem need include only those eigenvalues
that are less than some selected frequency.

The RESIDUAL STIFFNESS formulation then represents dynamically all
the modes retained; it "statically" represents all the modes deleted.

First; separate ch into retained and deleted modes:

dp = (3. ¢.) %L&j = @ u, + P Uy (3.9)

where GA(A, are modes to be retained.
(ﬁLu’_ are modes to be deleted.

The Ap of equations (3.9) is substituted into equation (3.8):

Mooo]{.- MM, ©6 o 'I,-of‘( Mmoo Top 3Ry

o Ino el |0 o o U, § =40 R
o o h, OJ i, o 6704, &, ) 0 2 L) e
O O © M \Y, o @b Q,TDQ&; o] o T QT{}
(3.10a)
where M, = @A™m; g, }’~- =pTKd,
=&'m; ¢, 4kt ==¢%TI<<$1
‘Q‘ = Au'U'P"f‘ qx_‘\’r‘. +A3 (¢| ul+¢l-u!.) +Aq_(¢,l:l.+¢,‘l:lz_)
+As (Qu,+ A U.) +¥L+§‘3++} (3.10b)
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In order to reduce equations (3.10) to the RESIDUAL STIFFNESS
formulation, the following assumptions are required:

A5 the aerodynamic forces due to deleted modal velocity and accelera-
tion are zero, i.e., A4¢,,u, = Ay, = O.

A6 the structural damping and inertial forces due to deleted modal
deformation 4, are zero, i.e., TD¢. = A70¢ = 0, M.y, = 0.

A7 the structural damping of the retained modes on the deleted modes
is zero, i.e., 7D, = 0.

Applying the assumptions to equations (3.10) reduces them to the
form of equations (3.11):

M o o](rr MM, o . MM o] v Qﬁr,?x
o T,o {5 ttlo o |UBt]l o o = {grh
0.9 u. ul T,
o o mJl¥ o 4T, o b CALY
(3.11a)
R.u, = (YL (3.11b)

i = A.’VP the Uy + A hu, + Ay tAgdi s As 14,
+4FC+{?8+P*_ (3.11c)

Equation (3.11b) is solved for W, ind the result is substituted into
equations (3.1lc):

= Ll ATH.
uz. - IQz_ éz ‘PL
~I
-+ A'5¢1- jz;_ d;_T‘pi et Pa‘r*“\* (3'12a)
Equation (3.12a) has a common factor, {k , appearing on both the right
and the left side of the eguality. A grouping of this factor to the left

side of the equality and removing the multiplication factor by inversion
reduces equation (3.12a) to the equation (3.12b)

$& :'[I _ASd)L A;."CALT]M' (All‘uib"'-AL{rP "”Af,é; W, +A4 (bl ao )
+As@u +'R-_+‘T?a+§‘\‘!- ) (3.12b)
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Summarizing equation (3.12b) and equation (3.1la):

Moo o)) fMML o e ML ©)(r, ) AT
0 Tno|ji+|o o [a(*|e o 5'; 18y
o omlli,) Lo ¢mg o k' ;e
‘ ! (3.13a)
'r' - EI" A}@A;' ¢,_T]-. (A‘nUP'V AL”\}-f +A5¢,ul + A4 d'u‘
+A5¢.u‘ 1“?:_‘\'?34 P—t ) (3'13b) k

Equations (3.13) are the RESIDUAL STIFFNESS formulation. They are

6 + r in number, where r is the number of retained modes, q& . A
substantial simplification of the MODAL SUBSTITUTION formulation (equations
(3.8)) has been accomplished. The 3N number of equations and unknowns
has been reduced to 6+r number of equations and unknowns. The cost of
the simplification is that the elastic airplsue must satisfy assumptions
A3 and A4 as in the MODAL SUBSTITUTION, and in addition, must satisfy
assumptions A5, A6 , and A7 . The advantage of this technique is
that r can be selected such that the 6+r equations are less than 50, thus,
the "inzccuracy" of the complex number eigenvalue computer routine can

be minimized. The disadvantage of the technique is that all the mnile
shapes, ¢, and ¢, , must be calculated.

e o g
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3.4 RESIDUAL FLEXIBILITY Formulation

The RESIDUAL FLEXIBILITY formulation eliminates the necessity to
calculate Q&_reqUired in equation (3.13) of the RESIDUAL STIFFNESS
formulation. The elimination is accomplished by redeveloping equations
(2.18a) using the "free-free" flexibility matrix. An exceilent descrip-
tion of this formulation is found in veferences 12 and 16. The expres-
sion equivalent to equation (2.18a) is equation (6.129) of reference 12:

&P = —an\i CQ;"’ 6({/?’?“)'\Jp'f‘ ML%; ):)‘—- abup + a'P‘:

TN T P TIEE A PN SOOI S TP

(6.129,
- R Ref. 12) : 3
vhere C =T-3M'®"m]C is the "free-free" flexibility matrix and ‘

C' 1is the flexibility matrix for the aircraft structure restrained (at_ 5
the c.g.) against rigid bedy translation and rotation. The terms GD::QP+C’<?,1
have been added using editorial prerogative. 3

The removal of 4{ L;‘d): from equation (3.12a) is accomplished in
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5 computational steps:
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.
e T ]

: 1. Recall equétion (2.18a); apply A3 and A4 and substitute
P ‘QP':‘ A+ B u from equation (3.9) °

ORTRDGO NALITY

F | ku = 7 (~mT; -oby +1:) 'dJW'wMJ*)
bLL:'CPT(""':‘o. -'DZ) a%)
[é, i.:‘g LP% -m; ;- Df, +£)

%u.% Io“k][ ](mm ~0hp+R) 610

2. Premultiply equation (3.14) byv [QS, @,_]

BﬁqﬁE i a' \—9'@:-—][& °][¢3(m2) -0d, +F)

‘QP ::[d)“&'-‘@‘r_‘. C‘b:.}Z:' LT](_m‘,m;__o'D; +{}) (3.15)

3. Equate equation (2.36), reference 15 to equation (3.15), i.e.,

ol eqis.15 - dp | eqcs.129, 1
ref. 12) .

TIPSR PO TDINYE T T

407+ L] (midy -0dp8:) = ~Todp + 8 Fi~a@mdp
.a m; a (ﬁr*N.'\fP-r leoé)

% . Bl T, 2 b
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Collecting terms that contain ¢,_ }l,"dtr

GA; AT (-m T, -0l +1:)
=[&-4 A g (-8 + 1)

- @, ¢ (T4 MAvpr Moty )

Defining R = d -¢, A:—' @,
d A ETEn D, -DEp +%) = R (m 3 -DB %)

-Om3 ("l;‘rfMl'V p+Md“ol§) (3.16)

4, Substitute CDp = ¢,U:~f Q‘:_Lh, from equations (3.9) into equa-
tion (3.16) and recall AS , A6 , A7 o

@ bea o \?‘:;%-[“"" salf #48

o MG
= K] % [mf S i [‘f o m“ Mg
~[elm)E] iw}pw,j:,,mi mf?

Yy ‘%OMPQ"M A7
(A0 ) ot - Db, +3:)
=R ("'m.'¢ou.“’ DQS,U,'*“R')
~Cm B (Gp 1MV +MaTp)
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Equation (3.17) becomes:

[¢,_k:'¢:]& = R (—m‘.é{j'_ 005.(1. *{§1)
~@m; 3 (5 + Mvp+ Mariy)

(3.18)
5. Recall equation (3.12a):
£; = A+ Ay +A,Qu, +A4aﬁu +As8, U, 4?3 -n‘l-tf}
+Asb RIAT 1‘\ (3.12a)

Substitute equation (3.18) into equation (3.12a), collect the terms
on left side of equation, and remove the common term by inversion:

fi= Ay + Aary + Ashu, +Aa80, +As L, 'L-%"_ﬁ*t
+AR(-m;u, -dd &, +¥1i)
- Aba m; a (’G‘r-i M.'U*P‘i- M‘Lrb;‘)

-l oo
'F‘ = [I - ASR] ( A,’VP + Af&", + A}dﬂu: + AQCAQ. +A5¢: un
4&*'}\34 P +ALR (-m.dy, -pgu)
Mm@ (’\3‘,, +Mup+ H;r,,,’)) (3.19a)
M o o] (v) [MM: © p;p MME © Moy .Y
oI.\ofiPJrooQ*OOig@Th

o o mila) Lo dog kT ek

(3.19b)
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Equations (3.19) are the RESIDUAL FLEXIBILITY equations that describe
the motion of a controls-free elastic airplane. As in the RESIDUAL STIFF-
NESS formulation, the number of unknowns is 6+r, where r is the number of
retained modes ¢, . This formulation does not depend upon S hdT
as did the RESIDUAL STIFFNESS formulation, thus, ¢, need not be calcu-
lated. The penalty for using the RESIDUAL FLEXIBILITY formulations are
the necessities to:

1. Determine C for the aircraft.
2, Calculate more numerous matrix products in N .

The relative cost advantage of the RESIDUAL STIFFNESS and RESIDUAL
FLEXIBILITY formulations is unknown at this time and is being investigated
further.

3.5 MODAL TRUNCATION Formulation

The most common formulation used to colve the controls-free, elastic
aircraft, dynamics problem is MODAL TRUNCATION. This formulation is
currently applied to the B-52 CCV (reference 11) and the B-1 (reference 29)
aeroelastic analyses. This formulation reduces the computational steps
required in the previous formulations by assuming A8 , and A9 below,
in addition to A3 thru A7 assumed previously:

A8 the structural spring forces due to W, are zero, i.e., &1Q1,= 0.

A9 the aerodynamic forces duec to W, are zero, i.e., A3¢Lu1= 0.

The application of assumptions A3 through A9 to equations (2.19)
reduces them to the following from:

MO o "\:r “MH:L © .09 MM;;: o 'y §v¥‘
o © 1)l + o o Q O o <Pt
o mjli LC‘ ¢od)t o Ay\" ¢ F
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Inspection of these equations indicates all reference to Qﬁgut,has
been deleted. This reduces the number of equations and unknowns to
6 + r , where r is the number of retained modes .
This formulation has the advantage of a simplified aerodynamic
representation. In addition, the required computer size and the computer
central processing time are smaller than either residual formulation,
thus allowing more analysis for the dollar.

The disadvantage of the formulation is that it has a narrower range
of applicability than any of the other dynamic aeroelastic formulations.
Thus, its use in the design of integrated flight control systems should
be verified with quantitative and qualitative analyses that test the as-
sumptions A3 through A9 .
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4.0 RESULTS

The primary results of this study are the six formulations of the
equations that describe the small disturbance motions. These six formula-
tions are summarized in Table 4.1. Here the similarity of the formula-
tions is readily apparent as well as the reduction in the number of
equations that occurs with each of the successive approximations. As
shown in the table, the EXACT formulation, equations (2.19) are 3N+6 in
number. The MODAL SUBSTITUTION formulation, equations (3.8), reduces the
number of equations to 3N in number, while the RESIDUAL STIFFNESS, equa-
tions (3.13), RESIDUAL FLEXIBILITY, equations (3.19), and MODAL TRUNCA-
TION, equations (3.20), formulations each consist of only 6+r equations
where r is selected by the analyst. The value of r usually ranges from
2 to 30. The simplest formulation of the equations of motion is the QUASI
STATIC, equations (3.4). It consists of only 6 equations and does not
explicitly represent the elastic deformations. :

The development costs of aircraft systems are often the major influ-
ence on the selection of the formulation of the equations of motion and,
thus, costs must be weighed in any analysis 1s an additional deciding
factor. In the event that two or more of the six formulations for the
small distrubance motions are appropriate to a particular fiight control
analysis, a cost-effectiveness trade can be constructed similar to that
presented in Table 4.2, As noted in the table, the increase in accuracy
requires an increase in analysis cost due to increasing equation complexicy.
The reasons for this increase in cost and complexity are that both com-
puter program run time and program size increase as the flight control
analysis moves from the QUASI STATIC to the EXACT formulation. The pri-
mary reason for the increase in run time and cost is the necessity to
employ highly accurate, computerized routines to calculate both the real
and complex eigenvalues and eigenvectors- of each system of equations.

In addition, the RESIDUAL FLEXIBILITY formulation requires a non-standard
flexibility matrix, the "free-free flexibility matrix", that is not
required in other formulatioms. This flexibility matrix, related to the
flexibility matrix of the cantilevered aircraft, must be recalculated,

using the equation
C = (T-3M'd"m\C

each time the center of mass is changed, ¢ , or the inertia of the air-
craft, M and mj, is altered. These two changes are cormon parametric
studies in most flight control analyses and are particularly important
in those studies that are used to design and analyze the reduced static
stability augmentation systems.
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5.0 'CONCLUSIONS AND RECOMMENDATIONS

F HE dndnee

This paper has related the common formulations of the equations
describing the motions of elastic aircraft. The conclusions of this
study are that:

1. There is no formulation that is appropriate to all flight control
analyses of elastic aircraft. The large disturbance formulation, equations
(2.10), rmust be carefully specialized for each analysis due to their im-
mense complexity. The small disturbance equations cf motion that are
most appropriate are those named the EXACT formulation, equations (2.19).
However, in the interest of reducing analysis costs, the five approximate

. formulations of section 3.0 may also be appropriate. In no case should
the QUAST STATIC, equations (3.4), or the MODAL TRUNCATiON, equations (3.20),
approximate formulations be chosen a priori. ' g

FRERRSSP TR A

LA e

2. The selection of an inappropriate formulation cf the equations
of motion can lead to large errors in the design of the flight comntrol
system. The actual numerical error cannot be determined at this time due
to a lack of extensive numerical evaluations of the terms that are neg-
lected to develop each formulation. The numerical evaluation of the
significant terms neglected in each of the formulations should be a high
priority research project. Contemporary aircraft should be used as the
study configurations in this research.

3. The implementation of the equations of motion on flight simulators
restricts the equations to the RESIDUAL STIFFNESS, equations (3.13), the
RESIDUAL FLEXIBILITY, equations (3.19), the MODAL TRUNCATION, equations
(3.20), or the QUASI STATIC, equations (3.4), formulations. This restric-
tion occurs because the number of equations must be small such that the
storage capacity cf flight simulators (usually less than 40,000 central
memory locations) is not exceeded. Obviously, the QUASI STATIC formula-
tion, consisting of only 6 equations, is the simplest to use. Usually
this formulation does not use all of the central memory of the flight
simulator and, thus, the remainder of the central memory can be used to
represent the nonlinear elements of the control system or the nonlinear
aerodynamic effects of the elastic aircraft. However, the QUASI STATIC
formulation does not represent the dynamics of the elastic structure and,
for these analysis cases, the other three formulations must be applied.

4. The formulations that may most easily include the effects of
nonlinear aerodynamics are the RESIDUAL STIFFNESS, RESIDUAL FLEXIBILITY,
MODAL TRUNCATION, and QUASI STATIC formulations. This is because these
four formulations can be reduced in size until central memory storage space
in the digital or analog computer becomes available for the storage of
the significant noalinear aerodynamic data. The penalty for the reduction
is, of course, a reduction in accuracy.
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